DEVFIDPER'R

Reprinted from PowerPuilder lonrnal powerBuilderJournal.com

PRODUCT REVIEW

PowerGen
by E. Crane Computing

Regeneration Is a Snap with PowerGen

Did you ever sit back late one evening and
dream of the day when building PowerBuilder
applications would be a simple, repeatable
automated process? | have!

I have for quite some time now, as a mat-
ter of fact, because each time | had to set up
another build — and then regenerate it three
or four times to ensure that everything was
compiled in inheritance order — | became
increasingly frustrated. For PowerBuilder to
last as a viable development
environment,somebody had to
come up with a method of
making this process simple.

A PowerBuilder build should
be like an automated C compile
using the “make” facility. So in
response to this widespread issue,
E. Crane Computing delivered a
solution called PowerGen. This product
provides a front-end interface that completely
handles a PowerBuilder build from start to fin-
ish. It’s automated, it's simple and it’s repeat-
able. For several months now I've been evaluat-
ing this product and designing a method for

! Gl fpplicatons b Progeot

a‘lﬁ‘ -
g and repeatable.

using it with our promotion and build process-
es. This article provides both a product review
and an outline of the methodology | used.

What Is PowerGen?

PowerGen’s primary function is to build
PowerBuilder applications. PowerBuilder also
builds PowerBuilder applications, but there are
some significant differences in the way
PowerGen builds versus how PowerBuilder
builds. These differences justify the former’s

existence. The bottom line:
PowerBuilder is missing what
makes the build process simple

Why do we need a product that
makes the process simple and
repeatable? In my opinion,

PowerBuilder is incomplete without it.
PowerBuilder provides a structured
environment for the rapid development of
applications and makes good use of object-
oriented technology, but turning out a prod-
uct is a royal pain. The average turnaround
time for our PowerBuilder applications to

& hRae e remn pid

AR ke o Sk e it phi
& wbow ol i g sk WAEIC,_WOT . PEL
sbin_nid o dphiSf bt SERC_ 0T PHL
Lituarp et Foramier bec] S prdrsbon:

b e et bk bl
ot phlec achtalcachirk 2 bl
b btk narchik 2 phl

Fopicatnns n Foect
Harss j PEL =] ﬁ
Tl
_J Aurzsw |

Figure 1: The Select Application screen

PFCEALIEE FENCLAFEES MR - Volume:6 Issue:5

Eric Saperstein

build is four to six hours, and from what |
hear, that’s a good time. This is unacceptable
when compared to our C++ applications that
turn out in less than 30 minutes.

Why Do You Need PowerGen? Because
PowerBuilder Is Incomplete Without it!

PowerBuilder doesn’t build as logically
expected or handle Inheritance order properly
during the regeneration or build processes. PB
completes these processes by taking each PBL in
an alphabetical directory listing. Consequently,
it may require the regeneration of an applica-
tion several times during one build to ensure
that everything gets regenerated properly.

PowerBuilder provides no command line
interface to allow automated or scheduled
builds. Furthermore, a builder is required to
use the PowerBuilder GUI for every new build.
Using a GUI leaves room for human error and
it forces some poor soul to be in early and/or
leave late in order to complete the process.

PowerBuilder doesn’t generate a log file to
record each step of the regeneration and build
process. Having no record of each build,
including the libraries used, errors found, etc.
means this information can't easily be included
in the applications archive for future reference.

A PowerBuilder build requires you to regener-
ate every object each time a build is required; no
mechanism to recompile one or a few objects and
then re-create the executables is available. This
wastes time when you make a small change to
your source code that forces a full regeneration.

With PowerBuilder you can’t safely stop a
build in progress. Stopping a one-hour build
process after 20 minutes because someone
found a last-minute bug usually corrupts a PBL
or two and requires everything to be checked
out all over again.

PowerGen is a packaged product designed
to provide a front-end interface to
PowerBuilder so it can handle regeneration
and build processes. The GUI or command
line interface of this product is available in
place of the PowerBuilder GUI interface when
a regen or build is required. PowerGen acts as
a command center; it doesn't directly access
PBLs. The product sits in front of

http://www.PowerBuilderJournal.com

PowerBuilder and forwards requests through
the PowerBuilder’s APl directly to the
PowerBuilder engines. The PB engine handles
the actual work, but with PowerGen in com-
mand, it works in an organized fashion.

PowerGen is a simple application that
provides a practical solution to all of the pre-
vious issues from a company dedicated to fill-
ing the gaps in the PowerBuilder develop-
ment environment.

PowerGen Review

I've read hundreds of product reviews in the
past few years and found that most set out to
tell you about the nice features of the product
and a few things that are wrong with it. That's
valuable information, but it doesn't tell you
what happens in the real world. I'm interested
in simple, real-life implementations of the
product so | can provide a practical review.
Therefore, this review is based on a pilot imple-
mentation of PowerGen on a real project.

When | began my review of PowerGen, |
determined two objectives. If one or both of these
objectives could be achieved, this product would
save hours of wasted time and aggravation.

My two objectives were to:

1. Develop a methodology using PowerGen to
handle a complete build of several of our
applications using a developer-maintained
build script. The applications consisted of
both proprietary and shared resources that
update on a regular basis. This can cause
changes to the list of required resources on a
regular basis. For the purpose of this article,
I assumed that the required files were already
successfully checked out of the source repos-
itory and were ready for the build.

2. Develop a methodology to utilize PowerGen
within our promotion process to complete
the automatic scheduled regeneration of our
application and shared source code. Some
segments of our code were released as shared
libraries, and these releases constantly updat-
ed to new release-based directories. This
made the regeneration location dynamic.

The PowerGen Configuration

Breaking down any system requires finding
out what files are important, what their pur-
pose is and how the application uses them. It
doesn't matter whether you're trying to learn
how to maintain an operating system, database
or word processor — the key files are the core to
understanding them.

PowerGen is based on text configuration
files with the “.gen” extension, or “Gen” files.
The Gen file holds the key information about
an application that PowerGen will follow to
complete regeneration or build an exe-
cutable. These Gen files can be maintained
manually through a text editor, or through
the PowerGen GUI. Maintenance of this file
is simple; anyone with knowledge of a text
editor can learn it in just a few minutes.

©copyright 1999 JEESYS:CON 39 E. Central Ave Pearl River NY 10965 914 735-1900 Volume:6 Issue:5 o

Explanation of each line is available in the
PowerGen manual.

This file allows you to pass along build infor-
mation to create repeatable releases using
PowerGen. A developer can create and maintain
an application’s Gen file, then pass it to the build
team to kick off PowerGen with acommand line
each time a build or regen is required. A com-
plete build or regen is now a one-step process
that doesn’t require human intervention. A sam-
ple Gen file can be found in Listing 1.

Objectives

| started writing this article with the inten-
tion of having to create a complex methodolo-
gy to handle the build and regen process using
PowerGen. Why not? Everything else I've had
to do with configuration management for
PowerBuilder has been complex and time con-
suming. As you'll see in the sections below, |
was wrong. These few paragraphs describe the
complete process from start to finish.

Objective I: The PowerGen Build

Incorporating PowerGen into an estab-
lished build process is simple. All you need to
do is add a line to your existing checkout script
to kick off a regen using PowerGen with a pre-
configured Gen file.

The following is a simplified example using
the PowerBuilder 5.0 example project and
PVCS Version Manager.

Hint: Using PVCS Version Manager, retrieve
the latest version of example50 PBLs. This
command can be modified to be based on ver-
sion labels or to select only specific files. The
PowerGen Gen file should be archived and
retrieved using a get or similar command.

C:\get -Y -W X:\archives\
example50*_v("\\c:\build\example50*)

The PowerGen regeneration command:

C:\Start /W PowerGen

/option=Y:\unitref\example50\example50_build.gen

Objective II: The PowerGen Promation Regen

Incorporating PowerGen into an established
promoation process is simple. All you need to do is
add a line to your existing script to kick off aregen
using PowerGen with a preconfigured Gen file.

The following is a simplified example using
the PowerBuilder 5.0 example project and
PVCS Version Manager.

Hint: Using PVCS Version Manager,
retrieve the latest version of example50 PBLs.
This command can be modified to be based
on version labels or to select only specific
files. The PowerGen Gen file should be
archived and retrieved using a get or similar
command.

C:\get -Y -W X:\archives\
examp 1e50*_v(*\\Y:\unitref\ example50")

The PowerGen regeneration command:

C:\Start /W PowerGen fiR /option=Y:\uni-
tref\example50\example50_unit_regen.gen

That’s it, a regen can be that simple. This
means that the process can be implemented on
a scheduling application! A promotion to unit
reference libraries can take place, with the regen
complete, every night, and a log file with error
reports will be ready in the morning.

Open Issues

PowerGen is limited to building with a pre-
configured Gen file to determine the location
of all the libraries and to provide all required
build/regen parameters. Several of our proce-
dures involve promoting to a new unique refer-
ence directory each time a promotion takes
place. This dynamic regen target makes it diffi-
cult to utilize PowerGen to perform the regen-
eration on a scheduled basis.

This issue also dictates that multiple Gen
files may be required to support a given pro-
ject. Note the difference in the PowerGen com-
mand lines in the build and regen processes
listed above. This is because the unit reference
libraries and build locations are not the same.

C:\Start /W PowerGen

/option=Y:\unitref\example50\example50_build.gen

C:\Start /W PowerGen fiR /option=Y:\uni-
tref\example50\example50_unit_regen.gen

If the target directory were dynamic,
PowerGen would increase in versatility. E. Crane
Computing is working on resolving this issue.

E. Crane Computing recently released version
3.0 of PowerGen. New to this version is a unique
function called “Bootstrap Import” This func-
tion creates an entire application from exported
objects, enabling a dynamic approach to source
and release control. For more information about
PowerGen version 3.0 and its many features, visit
E. Crane’s Web site at www.ecrane.com.

Conclusion

PowerGen is a simple product that provides a
great service. The capability of scheduling auto-
mated builds and regeneration for PowerBuilder
means no more late night dial-in sessions or four-
hour daytime delays in promotions. The product
is extremely easy to use — almost self-explanatory
if you already understand PowerBuilder — and
pays for itself in a very short time. []

About the Author
Eric Saperstein has over three years' experience
with software configuration management,
including projects involving Sybase, Oracle,
PowerBuilder, Visual Basic and Visual C++. He
has over eight years’ experience in information
systems including application development, net-
working and telecommunications. You can
contact him at esaperstein@metlife.com.

